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Semiclassical energy level statistics in the transition region 
between integrability and chaos: transition from 
Brody-like to Berry-Robnik behaviour 

Tomat Prosent and Marko Robnikf 
Center for Applied Mathematics and Theoretical Physics, University of Manbor, Krekova 2. 
SLO-62000 Mxibor, Slovenia 

Received 23 June 1994, in final form 16 September 1994 

Abstract. We study the energy level statistics of the generic Hamiltonim systems in the 
transition region between integrability and chaos and present the theoretical and numerical 
evidence that in the ultimate (far) semiclassical limit the Berry-Robnik (1984) approach 
is the asymptotically exact theory However. before reaching that limit, one observes 
phenomenologically a quasi-universal behaviour characterized by the fractional power-law level 
repulsion m d  globally quite well described by the Brody (or Iznilev) dislribution. We offer 
thearetical arguments explaining this extremely slow transition and demonstrate it numencally 
in improved statistics of the Robnik billiard and in the standard (Chirikov) map on a tONS. 

1. Introduction 

In this paper we do not intend to offer a complete review of the fundamentals of quantum 
chaos but rather spend just a few introductory words making the paper self-contained. In 
the development of quantum chaos much understanding has been achieved by studying the 
statistical properties of the (quasi-)energy spectra (and of other observables) in quantum 
systems whose classical counterparts are non-integrable and chaotic. For recent reviews 
see papers in Giannoni et a[ (1991), Haake (1991), Gutzwiller's book (1990), Eckhardt 
(1988), Bohigas and Giannoni (1984) and Robnik (1994). We know that there are three 
universality classes of spectral fluctuations: Poisson statistics in the classically integrable 
cases; in the case of classical ergodicity we find the GOE/FLJE statistics of random-matrix 
theories depending on whether there is onehone anti-unitary symmetry (we ignore spin). 
The interesting and difficult case of mixed-type classical dynamics of w - l i k e  (generic) 
systems has been studied numerically for the first time by Robnik (1984), where acontinuous 
transition from Poisson to GOE statistics in a billiard system (Robnik 1983) was found, and 
this work has been substantially revised in Prosen and Robnik (1993a). Further theoretical 
progress was published by Berry and Robnik (1984) where the following semiclassical 
theory of the level spacings was presented. The eigenstates (their Wigner functions in phase 
space) are supposed to condense uniformly on the underlying classical invariant regions 
such that each of them-in the semiclassical limit-supports a level sequence which, for 
itself, has Poisson or GOE statistics if the region is regular or irregular, respectively. All 
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the regular regions can be thought of as supporting a single Poisson sequence because the 
Poisson statistics is preserved upon a statistically independent superposition. The mean-level 
spncing of such a scquence is determined by the fractional phase-space volume of the regular 
regions. On the other hand a h  chaotic (GOE) level sequence has a mean-level spacing 
governed by the corresponding fractional phase-space volume. The entire spectrum is then 
assumed to be a statistically independent superposition of all subsequences. The statistical 
independence in the semiclassical limit is justified by the principle of uniform semiclassical 
condensation of eigenstates (in the phase space) and by the lack of their mutual overlap, 
consistent with Percival’s (1973) conjecture. Thus the problem of the statistics of the entire 
spectrum is now precisely formulated mathematically (this forms the essence of the Berry- 
Robnik approach) and its solution as far as the level spacings are concerned can be expressed 
in the following way: the statistical independence of superposition implies factorization of 
the gap distribution functions (Mehta 1991, Haake 1991): the probability that there is no 
level within a gap clearly factorizes upon a statistically independent superposition. The 
connection between the level-spacing distribution P ( S )  and the gap distribution E ( S )  is as 
follows: 

T P rosen and M Robnik 

d*E(S) 
P ( S )  = - 

dS- 
and conversely 

Leaving aside the general case of infinitely many chaotic components, which does not 
include anything surprisingly new, let us restrict ourselves to the case of one regular 
component with mean-level density P I  (= fractional phassspace volume) and one chaotic 
component with the mean-level density p2 where pi + p? = 1. This is going to be already 
an excellent approximation because in a generic system of a mixed type there is usually 
only one large and dominating chaotic region. Following Mehta (1991), Haake (1991) and 
Berry and Robnik (1984) we have 

E ( S )  = EPoisson(PlS)E~oE(~S) * (3) 

EPoirron(S) = exp(-S) (4) 

where the Poissonian gap distribution €poisson is 

whereas for the EGO€ there is no simple closed formula (for the infinitely-dimensional GOE 
case) and must be w,orked out by using practical approximations for P o o ~  and/or EGOE 
which e.g. can be found in Haake (1991). pp 72-4. However the two-dimensional GOE case 
(the so-called Wigner surmise) can be worked out explicitly as given in Berry and Robnik 
(1984), formula (28), which is usually a good starting approximation. 

As for the delta statistics A(L) a similar procedure based on the assumption of statistical 
independence leads to the simple (additive) formula (Seligman and Verbaarschot 1985) 

A(L) = ApoirronfP~L) i- AGOE(PZL) (5) 

where Apoisson(L) = L/15 whilst for A o o ~  there are good approximations given in Bohigas 
(1991). 

The main objecti\,e of this paper is to clearly demonstrate and explain the Berry- 
Robnik regime. However, before such a regime is formed in the ultimate far-semiclassical 
limit we typically observe a quasi-universal behaviour in the spectral statistics which is 
characterized by the fractional power-law level repulsion and globally the adequacy of the 
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Brody (1973, 1981) distribution and of similar distributions such as Ivailev (1989). A 
thorough numerical study of this phenomenon has been published recently by Prosen and 
Robnik (1993a). henceforth referred to as PR, and also Ganesan and Lakshmanan (1994) 
and previously by Seligman e f  al(!984), Wintgen and Friedrich (!987), H h i g  and Wintgen 
(1989) and Meyer et a1 (1984) (see also Meyer 1986). So, another goal of this paper is to 
present additional (possibly improved) numerical evidence (even somewhat better than in 
PR) for the existence of the fractional power-law level repulsion. This is given in the next 
section. In section 3 we present the theoretical arguments explaining this quasi-universality. 
In section 4 we show the transition from the Brody-like towards the Berry-Robnik regime 
in our billiard system. In section 5 we study the same aspects in the quantized standard 
map on a torus, but also present clear evidence for the establishment of the Berry-Robnik 
regime. In section 6 we review the ingredients concerning the structure of eigenfunctions 
which underlie the Berry-Robnik theory. In section 7 we discuss the main results and draw 
general conclusions. 

2. Revised statistics of a billiard system: the evidence for the fractional power-law 
level repulsion in the near-semiclassical regime 

The billiard system analysed in this section has been introduced by Robnik (1983) and is 
defined as the quadratic conformal map of the unit disk (zI ,C ! in the z-plane onto the 
w-plane, namely 

(6) w = z + 12. 
At h = 0 we have the integrable circular billiard, for 0 < h -c a the billiard is convex and 
since it has an analytic boundary the KAM theory applies, and is thus a truly generic system 
unlike some other frequently studied billiards such as the Sinai billiard, or the stadium 
of the Bunimovich and BenettinStrelcyn billiard. It has mixed dynamics in phase space. 
For h > the shape is non-convex so that Lazutkin caustics and the related invariant ton 
no longer exist (even for h = 4 this has been rigorously proven by Mather (1982)), thus 
enabling ergodicity. However Hayli et al (1987) have shown that there exists a family 
of stable periodic orbits (surrounded by very tiny stability islands) which undergoes a 
cascade of period-doubling bifurcations with the estimated and extrapolated limiting value 
of h = 0 .279 , .  , , On the other hand Markarian (1993) has shown rigorously that at h = f 
(cardioid billiard. having a cusp singularity) the system is ergodic, mixing and K-system. 
Li and Robnik (1994~)  have strong numerical evidence for ergodicity at h = i. The system 
has also been studied extensively by Frisk (1990), Stone and BMus (1993, 1994) and Bruus 
and Stone ( I  994). 

The quantum mechanics of this billiard problem is embodied in the following eigen- 
value problem: 

A q  + E @  = 0 @ = 0 on the boundary. 0) 
To solve this Schrodinger eigenvalue problem for the eigenfunctions $ and the eigenvalues 
(energies) E we have employed the powerful conformal mapping diagonalization technique 
described in detail in PR. In order to study the spectral fluctuation properties we have to 
separate the mean smooth part from the fluctuating part of the spectral staircase function 
(the so-called unfolding procedure) where we use the well known Weyl formula with 
perimeter and curvature corrections. After performing this unfolding procedure (the spectral 
staircase now has by construction a unit mean-level spacing) we begin with the statistical 
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Figure 1. The figure shous h e  cumulati\e leicl.sp3cmg dlsrnbJrlon for the mixed regime of our 
bllllvd sysrem ). = 0 175 mnd for .I 637 conscculi~e Ir%els of both pmtics In !he cnerg, range 
88000 < E < 132000. The doncd CJWCS reprerrnt me lm”ng Polsson md C o i  siit.sric( Thc 
thin full cune LS rhe beal-fir BcW-Robnh disvlbution md rhc brchen curve IS the bea.rir Rrod) 
drrmb.!ion ,:hrlc rne thxhcr Iull cunc disphys rhe numencd d i u  Although ,ve have used the 
h#ghcrl cncrgy dxi l h x  we were nblc IO calculle one c m  ,rill see 11131 the numend dtsrnourion 
is sit11 mum closc~ 10 Brody uih 0 = 0 43 thm 10 tne limiling semicI2ssicd B-rg-Robnik 
discibution 

analysis of the spectral fluctuations. Since we are interested predominantly in short- 
range spectral correlations we only show the results for (nearest-neighbour) energy-level 
spacings. The focus of our attention is the phenomenon of the fractional power-law level 
repulsion which is characterized by the locally defined exponent j3 whose value in practice 
is, however, determined by a globaI fit with a suitable one-parameter family of level-spacing 
distributions. One such distribution which is sufficient for our purposes is the well known 
Brody distribution whose cumulative form reads 

WB(S, j3) = 1 - exp ( -bSBcI)  (8) 

It turns out quite generally that the presentation and statistical analysis of cumulative 
distributions has many advantages. In figure 1 we show the numerical cumulative level- 
spacing distribution W ( S )  for h = 0.175 which should be compared with the best-fit Brody 
distribution (8) with @ = 0.43. Here, we are obviously very deep in the Brody-like regime 
of fractional power-law level repulsion and still v e y  far from the best fitting semiclassical 
limiting Berry-Robnik distribution. 

In this spirit while working with W ( S )  and following PR, we define the so-called T- 
frtncfion which is the following transformation of the spectral cumulative level-spacing 
distribution W ( S )  = Jfdt P(r )  (where P ( S )  is the level-spacing distribution after 
unfolding), 

T(u) = In(- ln(1 - !-%’(expa))) U = I n S .  (9) 

b = {I-(@ + 2 ) / ( @  + I ) ) ) B c 1  . 
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Figure 2. In this figure we illustrate the phenomenon of power-law level repulsion by means 
of the T-function of the level-spacing distribution for the transition from integrability to chaos 
in our billiard system, (n)  A = 0.100, (b) 0.125, (c) 0.150, (d) 0.175, (e) 0.200 and (f) 0.375. 
The numericd data are plotted in the form of plushinus one-sigma bars The straight lines 
represent the limiting Poisson and GOE Statistics (dotted) and the best-fit Brody statistics (full). 
The energy intervals that were used ax the same as in table I 

This unusual transformation has the property that it transforms the Brody distribution (8) to 
the straight line 

(10) 
In a graphical presentation the slope of the best-fit line minus one gives the so-called level- 
repulsion exponent b ,  By using this method (whose detailed exposition is given in PR) we 
have analysed the energy spectra of our billiard system at six different values of the shape 
parameter h = 0.1, 0.125, 0.15, 0.175, 0.2 and 0.375, as shown in figure 2. We have been 
able to calculate 45000 accurate energy levels (of both panties) for h = 0.1 and 25000 
accurate energy levels at A = 0.375. In order to make the effective value of Planck's 

T;(u) = ( p  + I)u + In b .  
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Figure 3. This is the most detailed and uniform represenmion ofthe level-spacing distribution by 
m a s  ofthe U-function: we plot its deviation ircm the U-function of the best-fit limiting Berry- 
Robnik distribution U(W(S) )  - U(W~”‘” ’ (S ,  p i ) )  vmus W ( S )  for the vansition from integra. 
bilitytoch~osinourbilliardsystem.(n)A =0.100,~b)0.125,(c)0.150,(d)0.175.(e)0.200and 
(f) 0.375. The numerical data (noisy curves inside *la grey band) are also compared with the 
devialion of the best-fit Brody distribution (broken curves) and with the deviation of the best-fit 
BRB distribution (dotted CUN~S). The energy intervals that were used are the same as in table I .  

constant Plea = l/@ well defined we have discarded the lower two thirds of our spectra 
so the presented results are obtained using only the upper third of the energy levels. The 
general conclusion is that the fractional power-law level repulsion exists and extends over 
several orders of magnitude in S. 

The T-function representation nicely describes this phenomenon but has the 
disadvantage of being biased to larger values of S, where the expected and the actual 
statistical error are smaller than at smaller values of S. This difficulty is removed in another 
representation namely the so-called .!/-function (transformation of U’(S)), 

U( W) = ( 2 / n )  cos-’ m (11) 
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Table 1. The table includes the values of all lhe relevant parameters which were obtained 
by the leas-squares fit of the level-spacing distribution with the three theoretical distributions: 
Berry-Robnik (columns 3, 4), Brody (columns 5, 6). and combined BRB (columns 7-9) covering 
the transition from integability to chaos in our billiard system with the six chosen values of 
deformation parameter A. N is Ihe number of consecutive levels which were used for statistical 
analysis starting at ii: 2Ntb and ending at zz 3NIh consecutive level of each parity. The quality 
of the fit is characterized by the value of the ratio x1/N which ideally should be less than one. 
In the 10th column we eive the measure of the classical.reeular reeions. 

0.100 13733 0.02 0.3 0.80 0.4 0.32 0.73 0.2 0.88 
0.125 12861 0.08 0.9 0.65 2.0 0.28 0.47 0.4 0.70 
0.150 12239 0.17 2.0 0.49 4.2 0.41 0.33 0.7 0.36 
0.175 11637 0.43 0.8 0.25 10.5 0.52 0.08 0 . 2  0.17 
0.200 11037 0.69 O S  0.11 4.7 0.72 0.02 0.3 0.05 
0.375 7977 0.94 0.2 0.007 0.2 0.94 0.000 0 . 2  0.00 

where the estimated statistical error is now 611 = l / ( n O ) ,  N being the number of 
numerical spacings, which is constant at all S. In figure 3 we show the difference between 
the actual U-function U ( W ( S ) )  and the best-fit limiting Berry-Robnik (based on exact 
infinitedimentional GOE expressions for E ~ E ( S )  in (3), rather than the Wigner surmise 
(two-dimentional GO€)) UBR = U ( W y ( " ) ( S ,  P I ) )  versus W ( S ) .  In graphs of this type the 
density of objects on the abscissa is constant. In these plots the chosen values of A are the 
same as in figure 2. 

In table 1 we give the numerical values of the relevant parameters and statistical 
measures for three distributions including the Berry-Robnik-Brody distribution introduced 
in the next section. 

3. Theoretical arguments explaining the quasi-universal Brody-like regime: the 
fractional power-law level repulsion 

Since the fractional power-law level repulsion is a quasi-universal and very robust 
phenomenon it is not surprising that it can be explained in terms of very general arguments. 
In fact the only important relevant ingredient is the validity of the semiclassical (action) 
tunnelling formula for the size of avoided crossings. This formula, which we will introduce 
below, is certainly correct in integrable systems, but is expected to also be correct in cases 
of soft KAM chaos as shown by Wilkinson (1987), and might fail in cases of hard KAM 
chaos as demonstrated by Bohigas eta1 (1993). 

Let us take certain quantum KAM Hamiltonian t? and two states I@,) and I@*) whose 
phase-space distributions (Wigner or Husimi) are localized on the disjoint classical invariant 
components, e.g. on KAM tori separatekby a broken separatrix. Of course, I@,) and I@*) 
are typical2 not exact eigenstates of H ,  but we shall assume that the expected energies 
Ej = (@jlHl@j) are close together (much closer than the mean-level spacing) so that the 
true eigenstates I @ )  can be calculated inside this 2 x 2 model, written as linear combinations 
of these non-communicating disjoint states 

k= I k=l 

The true eigenenergies are simple solutions of the quadratic secular equation whose 
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difference. the level spacing S reads 
1 s=- (1 - o:,,s,Z + 4(H12 - E O d *  (13) 

where SO is the energy spacing of the disjoint states SO = IEz - E l l a n d  is an average 
energy b? = ( E l  + E2)/2. H12 and 0 1 2  are the overlaps H12 = (@I IHIPz), 0 1 2  = (@II@~) 
which are assumed to be small (U (exp(-constant/It))), since we h o w  that the states @I and 
$2 are exponentially localized on the disjoint classical invariant sets, and so one may write 

S = J s , 2 + s . ( 1 + 0 ( 0 1 2 ) 2 )  6=2(H12-EO,*) .  (14) 
Let us now consider the statistics of the ensemble of such spacings S. Uncorrelated spacing 
SO and the overlap 6 (which can also be interpreted as the size of the avoided crossing) 
can be considered as the two, obviously independent, random variables. The first random 
variable SO is obviously distributed according to the Poisson distribution 

(where we choose the energy units so that (SO) = I), since the expectation values of the 
Hamiltonian El,z for states having Wigner phase-space distribution functions with disjoint 
supports cannot be correlated. The second random variable 6 can be written in terms of 
another random variable. namely the classical tunneling action q (Wilkinson 1987) 

(16) 6 = 

where we absorb the non-essential prefactor into the definition of q which makes a negligi- 
ble shift of order 0 (h lnh) when h --t 0. The probability distribution of tunnelling actions 
@ ( q )  = d P / d q  depends solely on classical dynamics and is independent of the It (at least 
asymptotically as h --t 0). We calculate the level-spacing distribution P ( S )  = dP/dS  in 
two steps. 
(i) We calculate it for fixed value of 6 

(ii) Then we integrate over 6 weighted with its probability distribution 

giving 

@ ( x  -It In S) 
1 - exp(-2x/h) 

0 0 

where we have introduced a new integration variable x = -A In(S/S) and used an approxi- 
mation e-- % 1 since we are only interested in the small spacing region S << 1, where 
the phenomenon of level repulsion exists. Now the power-law level-repulsion phenomenon 
can be shown to be a simple consequence of the fact that P ( S )  can be written as a power 
series in In S rather than in S provided that @ ( x )  is nice enough. When approaching semi- 
classical limit h + 0, it is enough to require that the tunnelling action distribution @ ( x )  is 
smooth and differentiable and expand @(,r-h In S) into the first-order Taylor series around x 
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if IAlnSc~/coI << 1 The coefficients CO, CI can we written systematically as power series in 
h but we are satisfied with the first order 

Thus we have shown that the phenomenon of the fractional power-law level repulsion exists 
on the interval of S 

P ( S )  a SP e-’/@ c. s < I (23) 

b’ = h@(O) t U(hz) 

where the level-repulsion exponent goes to zero linearly as fi + 0 

(24) 

which is compatible with the validity of the Berry-Robnik formula which does not exhibit 
level repulsion, PBR(0) # 0 

As explained at the beginning of this section the existence of the fractional power- 
law level-repulsion embodied in (23) and (24) depends crucially upon the validity of the 
semiclassical (action) tunnelling formula (16), which might fail in chaotic systems as shown 
by Bohigas eta1 (1993) even if the two supporting classical chaotic components are disjoint. 
However, if for some reason (e.g. diffusively localized classical dynamics in a chaotic 
region) the quantal eigenstates as described by the Wigner functions are strongly localized, 
then they might mimic two regular states and (16) might be satisfied approximately implying 
the existence of the fractional power-law level repulsion and globally Brody-like behaviour 
of the corresponding sequence of purely irregular levels. Thus we can allow qualitatively 
for’the Brody-like regime in a completely chaotic system, but the dependence on A in this 
case is much more complicated and the linear dependence of (24) on A does not apply: 
indeed, as h + 0 we have to recover ,9 = 1 and not ,9 = 0. Such a scenario might 
be closely related to the analysis of localization of chaotic eigenstates in time-dependent 
systems and its relevance for the Brody-like behaviour of the quasi-energy spectra. See, for 
example, Chirikov (1991) and Casati and Chirikov (1994) and the references therein. 

But once again we should explicitly emphasize that in this section we are not deriving 
the Brody distribution which still has no physical foundation whatsoever, but only the 
fractional power-law level repulsion which is just a local property of P(S)  at small S. Its 
globalization results in what we carefully call a Brody-like distribution which, for example, 
could be very well described or approximated by the Izrailev distribution (Izrailev 1989) 
or other similar formulae. For the sake of simplicity and in view of our ignorance of the 
precise global features of such a distribution we have used just the Brody-distribution as 
the mathematically simplest one which certainly correctly captures the small-S behaviour. 

Of course, generally there is no procedure for a separation of regular and irregular levels 
in a generic conservative system unless the rezular levels are characterized by the almost- 
degeneracy implied by some discrete symmetry (Bohigas et all993). Therefore it is difficult 
to test the above ideas in a mixed system, whilst in an ergodic system we might be more 
lucky. Under such circumstances for the purpose of purely phenomenological analysis of 
the Brody-to-Berry-Robnik transition in a mixed system we propose to use a two-parameter 
level-spacing distribution. The regular levels with measure (density of levels) PI  are sup- 
posed to obey Poisson statistics, and the irregular levels with measure pz = 1 - PI  are 

,9 = 0, in the strict semiclassical limit. 



8068 

supposed to obey the Brody distribution with some B which is supposed to capture the lo- 
calization of the underlying chaotic states. Thus assuming statistical independence of regular 
and irregular levels we have introduced a two-parameter level smtisfics with gap distribution 

T Prosen and M Robnik 

EBm(S, P I ,  B )  = Epoi.w”1S)EB(P2S. B )  = e-’lSEB((l -PI)S, 6) (25) 
where Brcdy statistics has a gap distribution which can be expressed in terms of an incom- 
plete gamma function Q (see, for example, Abramowitz and Stegun 1965) 

EB(S,B)= Q(’ ( . ( - )S )” ’ ) .  8 + 2  
B + 1 ’  B + 1  

We shall refer to the level-spacing distribution implied by (25) as Berry-Robnik-Brody 
(BRB). It will be seen later that this phenomenological modelling is very successful leading 
to up to 100% statistical significance level. 

In section 5 we show numerically, for a mapping on a two-dimensional torus, the 
existence of localized quantum states in a classically ergodic but strongly diffusive regime 
which gives rise to an excellent and convincing manifestation of the Brody distribution 
(see figure 8). Indeed this confirms the picture which has been outlined theoretically and 
qualitatively above. 

4. ’lkansition from near- to far-semiclassical regime in the billiard system 

We can observe the theoretically described behaviour of the level-repulsion exponent 6 
versus an effective value of h as predicted by equation (24) for a nearly integrable regime 
(small A) of our billiard system. Since the billiards have a scaling property (all energy 
surfaces are dynamically equivalent) the semiclassical limit h -+ 0 is equivalent to the limit 
E -+ M with an effective value of Planck’s constant hcfi = E-’/*. So we have divided our 
spectrum for h = 0.1 into several energy stretches and fitted the Brody distribution on each 
of them locally, for small spacings (0 < S < 0.1). Thus we have determined the level- 
repulsion exponent p as a function of energy E. This is an extremely difficult task since 
spectral stretches should be narrow enough in order to make the energy E well defined, 
but also wide enough in order to reduce the statistical fluctuations. We have also averaged 
B ( E )  over three different, but similar, values of deformation parameter h = 0.095,O.lOO 
and 0.105, but even then we can draw only qualitative conclusion (see figure 4) that p ( E )  
agrees with the asymptotic formula (24) of the previous section: 

B ( E )  o( E-’/* E -+ M .  (27) 

Figure 4. Here we show how the level-repulsion exponent 
f l  (determined by the Bmdy fit on the small spacing interval 
0 c S c 0.1) behaves as a function of the energy E for the 
nearly-integrable (U) regime of our billiard system (near 
A = 0.1). To determine f l  as locally (with res@ to the energy 
E) as possible we have used energy stretches eonmining 4000 
levels. The positions of the bars denote the averaged f l  over 
three different nearby values of the defomtian parameter 
A = 0.095.0.100.0.105 and two parities whereas the heights 
of the bars are the eStimates of lhe &Is statistical error. 
Qualitatively we can confirm the dependence p ( E )  of (24) 
but for a detailed quantitative analysis the numertcs are still 
much too aude. 
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5. The standard map on a torus: going from Brody-Like to the Berry-Robnik regime 

Now let us define another dynamical system, following Prosen and Robnik (1994a), whose 
phase space is just a compact two-dimensional torus TZ = ( ( x .  y); x ,  y E [-n, n)], where 
the periodic coordinates x and y will be called position and momentum, respectively. The 
system’s dynamics will simply be given by consecutive applications of ‘free motions’ 
U*&, y) = (x  -+ y, y)  and ‘kicks’ U ~ & ,  y) = ( x ,  y - a sin@)). The most useful is 
the symmetric representation of the evolution mapping U ,  

(28) 

where U,!&, y) = ( x ,  y - asin(x)/2). Our mapping (28) is, in fact, the standard 
(Chirikov) map on a torus T’ rather than on a cylinder and its representation i s  dynamically 
(canonically) equivalent to the usual representation U ~ , r o U h .  It possesses two symmetries, 
namely the time-reversal symmetry T ( x ,  y) = ( x ,  -y),  T o U o T = U - ’ ,  and parity 
P ( x ,  y )  = ( - x ,  -y), P 0 U 0 P = U .  

Since the classical phase space is compact, the quantum Hilbert space is finite- 
dimensional and its dimension n determines the dimensionless value of the effective 
Planck’s constant hen = 2n/n. Let n be an even number n = 2m. The position and 
momentum eigenstates denoted by I x k )  and Jyt) can be defined through the relation (xklyt) = 
n-*/’exp((in/27r)xkyI), where our choice xk = (27r/n)(k - 1). y~ = (2n/n)( l -  I ) ,  k, I = 
1 . . . n, warrants the single-valuedness on the torus Tz. ThLquantization procedure is now 
almost obvious: the quantum unitary evolution propagator U is decomposed to products of 
free motions and kicks &iCk in precisely the same way as the classical one (28) where 
quantum analogues for the kick and the free motion are diagonal in position and momentum 
representation, respectively, 

112 112 U = &,,, 0 Ufree 0 %&, 

The phases of the diagonal elements in (29) are (when divided by n / k )  just the classical 
generating functions which generate the classical mapping (28). Therefore as n + 03 the 
quantum evolution approaches the classical dynamics. There exists a simple closed-form 
expression for the propagator in position representation 

which is the discrete time analogue of the well known infinitesimal propagator 
exp[(i/h)((x - ~ ’ ) ~ / 2 m d t  - ( V ( x )  + V(x’))dt/2)] for the general continuous Hamiltonian 
case. Using the symmetry ?der parity P one can further reduce the n-dimensional 
unitary matrix-& = (xklUIxkr) to two (m = n/Z)-dimensional unitary matrices 
U;, = ( x p ( U ( x r u )  where Ixku) are parity preserving position eigenstates ( x k u )  = 
2-‘/2(lxk) + uI - x k ) ) ,  k = 1 . . . m and U = & I  is a parity eigenvalue. Of course, 
quantization can also be worked out for odd values of n but it is physically less transparent 
so we have used only even values of n in our numerical example. The same system but in 
a.slightly different formulation, has been introduced and studied by Izrailev (1986, 1990). 

We have diagonalized symmetric (due to time reversal) and unitary matrices U; as 
far in the semiclassical limit m + 00 as possible. Spectra for both parities and several 
consecutive values of m were joined together in order to obtain statistically significant 
results. Clearly, due to the time-reversal symmehy the GOE (or, strictly speaking C ~ E )  
statistics will apply to irregular level sequences. This is a highquality resolution test of the 
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Figure 5. The figure illusmles the transition from the Brody-like to Beny-Robnik regime for 
the compact smdard mapping system (30) at a = 1.8. at three sI~etches of m: (a), (b)  I 1  , , ,40 
(1220 spacings), (c). (d) 301 ,..400 (70100 spacings), and (e), (f) 3991 ... 4000 (79910 
spacings) and both parities. The cumulative level-spacing dishibution W ( S )  ((a), ( c )  e ) )  and the 
deviation ofthe U-function fromthebest-fit Berry-RohnikcurveLI(W(S))-U(W,BK'm)(S. p , ) )  
versus W ( S )  ((b),  (d), (f)) is shown. On the left-hand side ((a). (c). (e)) the dotted curves axe 
the limiting Poisson and COE cases, the broken curve is the best-fit Brody distribution, the thin 
full curve is the best-fit Beny-Robnik curve and the thickest full curve is the numerical one. 
Small spacing regions 0 c S c 0.3 are shown in magniiied windows. On the righbhand side 
((b). (d ) .  (f)) the Beny-Robnik w e  is j u s  the abscissa, Brody is broken, while the dotted 
curve is the best-fit BRB distribution which excellently matches the data at all m, and the grey 
band indicates the *lu statistid uncertainty of the numerical data 

Berry-Robnik formula so we have investigated the cumulative level-spacing distribution 
W ( S )  = l f d u  P ( a )  rather than the probability distribution P ( S )  itself, since the latter 
suffers from arbitrariness of binning. We have applied a least-squares fit of the two- 
component Berry-Robnik formula with estimated one-sigma uncertainties for the numerical 
data 6W = @(l - W ) / N ,  where N is the total number of numerical spacings, (see PR), 
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Table 2. This table illustrates the transition (as average m increases) from near- to far- 
semiclassical regime (by using quasi-energy levels for each m from the interval m~ < m < m~ 
(columns I and 2)) for the two mixed regimes of the compact smdard map (I = 1.3 and a = 1.8. 
We show all the relewnt parameters which were obtained by the least-squares fit of the level- 
spacing distribution with the three theoretical distributions: Berry-Robnik (wlumns 3 and 4). 
Brody (columns 5 and 6). and combined BRB (columns 7-9). The total number OF spacings (for 
bothparities)isequal toN = m z ( m z t l ) - m l ( m l - I ) .  Onecanseethatthevansitionis faster 
at a = 1.8 than at a = 1.3 (this is probably due to the less diffusive classical dynamics inside 
the chaotic comDonenO whereas wrnbined BRB distribution works excellentlv at all values of m. 

a = 1.3. pfl = 0.372 
200 300 0.146 
425 575 0.170 
950 1050 0.188 

1981 2020 0.207 
3991 4000 0.237 
7991 8000 0.240 
a = 1.8. p? = 0.265 

200 300 0.356 
425 575 0.370 
950 1050 0.380 

1981 2020 0.386 
3991 4000 0.392 
7991 8000 0.388 

6 
14 
27 
40 
44 

126 

36 
118 
209 
167 
95 

220 

0.531 
0.500 
0.476 
0.449 
0.409 
0.400 

0.302 
0.291 
0.282 
0.277 
0.272 
0.273 

13 
59 
77 
48 
13 
6 

6 
I4 
6 
5 
0.9 
0.3 

0.384 
0.356 
0.401 
0.488 
0.639 
0.789 

0.748 
0.769 
0.843 
0.843 
0.891 
0.927 

0.360 
0.292 
0.292 
0.311 
0.330 
0.365 

0.246 
0.241 
0.253 
0.247 
0.255 
0.265 

0.5 
0.2 
0.2 
0.4 
0.8 
0.6 

0.3 
0.2 
0.2 
0.2 
0.2 
0.5 

and evaluated the x 2  test. Moreover, we had to use the true infinite-dimensional GOE 
statistics to model chaotic spectral subsequence instead of the commonly used Wigner 
surmise, since, as deep in the semiclassical limit as we were able to go to (at m = SOOO), 
we could clearly detect considerable differences. On the other hand we have also compared 
OUT data with the phenomenological Brody model of power-law level repulsion (X), which 
was reported by many authors (Wintgen and Friedrich 1987, Hiinig and Wintgen 1989, PR, 
Ganesan and Lakshmanan 1994) to provide a statistically significant fit to physical data at 
practically accessible energies (i.e. effective values of f i). For a more refined analysis we 
have also used the U-representation of the level-spacing distribution (11). We have plotted 
U ( W ( S ) )  - U ( W ~ c m ) ( S ,  P I ) ) ,  where W;R(m) is the best-fit two-component Berry-Robnik 
cumulative level-spacing distribution (based on infinite-dimensional GOE statistics), versus 
W ( S )  (see figures 5 and 6) .  Here thedensity of equally weighted numerical points is constant 
along the abscissa so that the information really is uniformly distributed over the graph. 

We have observed a very slow convergence towards the semiclassical limit, which is 
characterized by a smooth transition from the power-law Brody-like regime in the near- 
semiclassical limit towards the ultimate Berry-Robnik regime in the far semiclassical limit, 
as illustrated in figure 5 for the system (30) at a = 1.8. The quasi-universal Brody-like 
regime (nrith the fractional power-law level repulsion) has been clearly and statistically 
significantly demonstrated in (PR), and in section 2 of this paper. The origin of this 
phenomenon has been explained and understood theoretically in section 3. Thus the 
wansition exemplified in figure 1 is very typical. 

But for a = 1.8 and m = 8000 (numerical data were collected for m = 7991.. ,8000 
and both parities) we have clearly reached the Berry-Robnik regime of the far-semiclassical 
limit which is reflected in the fact that the matching between numerics and the best-fit Berry- 
Robnik curve becomes really excellent (100% confidence level) (see figure 6). The value 
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5 10 15 2 0  25 30 35 

F i g w  6. (a) Cumulative IeveLspacing distribution and (b) its U-function for the highest 
lying range of m = 7991 ... 8000 (159910 spacings) in the standard mapping system on a 
toms. The meaning of the c w e s  is the same as in figure 5 and also a = 1.8. In (a )  the 
standard representation the theoretical md numerical curves are completely overlapping. and 
the agreement between the best-fit Beny-Robnik curve with p~ = 0.273 and numerics is really 
excellent since the value of x 2  = 45000 is 3.5 times smaller than the number of spacings. 

of the parameter p, = 0.2727(1 & 0.9%) only deviates by Fc: 3% from the classical regular 
volume p;] = 0.265(1 i 0.8%). For larger values of p1 closer to integrability (smaller 
values of parameter a )  the convergence is even slower, e.g. for a = 1.3 ( p ~  = 0.372) there 
are still tiny but detectable deviations between the theory and numerics even at m = 8000. 
As the value of m decreases the discrepancy between the quantal and classical value of p1 
increases, where the former is being typically larger than the latter. On the other hand in the 
whole range 1 c m c 8000 (from near to far semiclassics) the two parameter (PI, ,4) BRB 
model has turned out to be highly satisfactory (100% confidence level). See table 2 where 
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Figure 7. The delta stalistics A ( L )  is shown at a = 1.8 for the highest lying range of 
m = 7991 , , ,SOW in the quanhlm standard map on the tONS. The dotted curves we the limiting 
Poisson and OOE curves. the thin full cutve is the best-fit Seligman-Verbwsehot famula (5) 
with 01 = 0.274, and the thick full curve shows the numerical data. The vertical broken lines 
indicate the rrgion where the least-squares fit is applied. The theory starts to deviate from 
numerics above L Ei: 150 where the saturation effects set in. 

we show the relevant parameters of all the three distributions after the best-fit procedure. 
We have also found a significant f i t  to the semiclassical ansatz for the delta statistics A(L)  
(5) (at m = 8000) with the best-fit value of the parameter p1 = 0.274(1 f 1.5%) deviating 
by 3.3% from the classical value (figure 7). The fit was on the interval 0 < L < 100 which 
is-as judged a posteriori-safely below the saturation region (Berry 1985). 

So far we have been talking about the Brody-like regime in a KAM-like transition from 
integrability to chaos for which, in section 3, we have given a theoretical explanation. Now 
we will discuss a dynamical system which is ergodic but strongly diffusive (slow classical 
diffusion implying an effective classical localization) leading to the quantum localization of 
eigenstates and Brody-like spectral statistics. To this end we have slightly generalized the 
standard mapping introduced above by defining Og,(x. y )  = ( x ,  y -asin(x) + bsin(59x)). 
where a and b are small, specifically a = b = 0.1. The classical mapping is then fully 
specified by (28) and correspondingly its quantal analogue by (30) where the two terms 
;a cos(n) must be supplemented by adding the two terms -4(b/59) cos(59x). respectively. 
The classical dynamics has been carefully inspected and indeed found to be diffusive ergodic. 
In figure 8 we show the result of the spectral statistical analysis. The Brody distribution 
is seen to be a good fit to the numerical data. A smooth transition from almost Poisson 
towards GOE is clearly demonstrated. Technically, in order to verify the consistency we 
have also fitted the data by the BRB distribution with the result that p1 is close to zero (in 
fact slightly negative) and ,3 close to the Brody value. 

The presented numerical material and the theoretical considerations provide firm support 
for our opinion that the two-parameter BRB distribution represents the most general family of 
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Figure 8. The cumulative level-spacing distribution W ( S )  ((a), (c). (e)) and the deviation of the 
U-functionfromthe best httingBeny-Robnikcwe U ( W ( S ) ) - U ( W ~ R 1 w ’ ( S ,  pt ) )  versus W ( S )  
((b), (d). (f)) is shown for lhe ergodic-diffusive modified standard mapping (see section 5 )  and 
for three different stretches of m = n/h,a: (a). (b) n = 451 . , ,550, (c). (d) m = 976.. ,1025, 
(e), (f) m = 1981,.  ,2020, The graphical representation is analogous to the figure 5 but here 
we do not plot he best-fit Berry-Robnik and BRB distributions (for the obvious reasons) but 
we only compare our data with the Brody distribution (broken curves) which turns out to be 
surprisingly good fit especially in the nw-semiclassical regime (smaller m), The comsponding 
values of the level-repulsion parameter are (U). (b) p = 0.16, (c). (d) 023, (e), (f) 0.39. 

distributions capturing the double transition: from integrability to chaos and from near to far 
semiclassics (from Brody-like to Berry-Robnik) in the case where we have only one large 
dominant classically chaotic region, or alternatively from shong localization to extendedness 
in a diffusive ergodic regime. In this model the localization effects on chaotic components 
are captured by the parameter p and as a consequence of that the (best-fit) quantal prRB is 
strictly smaller than the classical one p? which, in turn, is a consequence of the fact that the 
exponential tails of the quantal chaotic states penetrate into the classically regular regions. 
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This circumstance is illustrated numerically in table 1 for the billiard system and in table 
2 for the mapping system. The discrepancy between classical and quantal values of p1 is 
larger in the billiard system than in the mapping system because the effective h is larger in  
the former system. 

6. The structure of eigemtates and their relevance for the semiclassical behaviour of 
level statistics 

It appears that the geometry of eigenstates (configurational wavefunctions and their Wigner 
distributions in the quantum phase space) and their morphological types correlate with the 
statistical properties of the energy spectra (and of other observables). We have systematically 
surveyed a vast amount of representative eigenstates both in the billiard system and in 
the compactified standard map in various regimes between integrability and irregularity 
covering also the transitional regime from Brody-like to Berry-Robnik behaviour. The old 
idea by Percival (1973) of classifying the energy levels and the corresponding eigenstates 
into regular and irregular is being confirmed in a rather convincing manner. (The details 
of this research will be published in a separate paper (Prosen and Robnik 1994b), but 
here we expound some general conclusions.) All states can be classified clearly either as 
regular or irregular in the sense that they ‘live’ exclusively inside a classically regular or 
irregular region in the phase space, respectively, except for those cases where the two states 
are almost degenerate (exhibiting a narrowly avoided crossing), and allow for a mixing of 
the two classes of states (mixed states). But the measure of mixed states vanishes in the 
semiclassical limit hence the validity of the Percival conjecture. 

However, the majority of irregular states for systems in the transition region of mixed 
type classical dynamics in the near-semiclassical limit is localized or even strongly localized 
in the sense that they effectively occupy only a strict subset of the underlying classically 
chaotic region. But as R -+ 0 in the far-semiclassical limit we indeed observe a general 
tendency towards uniform extendedness: the so-called principle of uniform semiclassical 
condensation applies (see, for example, Li and Robnik 1994a, Berry 1977, Robnik 1988). 
The locally averaged Wigner functions tend to the classical probability density on the given 
classical invariant component. Thus in the ultimate semiclassical limit we see that the 
quantum eigenstates are condensed on disjoint regions in the phase space which implies little 
interaction between them giving rise to the statistical independence of the corresponding 
energy level sequences. This is the basis of the Berry-Robnik approach. 

However, before we reach this far-semiclassical limit either the effects of tunnelling or 
the effects of localization of eigenstates give rise to the fractional power-law level repulsion 
and the Brody-like behaviour, as described in section 3. 

The picture outlined in this section has also been revealed numerically in a study of 
the same billiard and of other billiards such as the Bunimovich stadium using a different 
numerical technique (Li and Robnik 1993% b) which allows us to go higher into the 
semiclassical limit bat has the disadvantage of systematically skipping pairs of almost 
degenerate states. 

7. Discussion and conclusions 

This paper reports on the first successful verification of the Berry-Robnik level-spacing 
distribution, which eliminates any doubts about the validity of the Berry-Robnik regime in 
the dispute concerning the ultimate semiclassical spectral statistics (in generic Hamiltonian 
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systems), thereby supporting the view that the Berry-Robnik picture is the asymptotically 
exact description of level statistics. With present day supercomputer capabilities such a 
statistically significant analysis is possible only for one-dimensional time-dependent systems, 
like our compactified quantum standard map, because the so-called far-semiclassical limit 
is being formed very slowly as ft -+ 0 and the effective h is related to the dimension n of 
matrices which need to be diagonalized via ft o[ n-’” where f is the number of freedoms. 
Correspondingly. we have investigated the structure of eigenstates in phase space (Wigner 
and Husimi distributions) and we have also found very slow convergence to the ultimate 
uniform localization on classical invariant components in the semiclassical limit (Prosen 
and Robnik 1994b). Non-uniform localization on the chaotic region survives much higher 
in n than one would expect if it were just a consequence of slow classical transport in phase 
space due to partial baniers (Bohigas et d 1993). 

In practice, however, it is very hard to reach the far-semiclassical limit and we typically 
observe Brody-like behaviour instead. This is characterized by the fractional power-law 
level repulsion at small S as explained in section 3: the origin of this phenomenon is either 
the validity of the tunnelling action formula (16) in cases of soft KAM chaos (which is 
theoretically completely understood), or some equivalent of that in cases of localization in 
classically diffusive ergodic regions (which is not yet understood quantitatively). In this 
paper we have offered massive numerical evidence for this type of behaviour. 

Having understood that we propose a two-parameter family of level-spacing distributions 
which we call Berry-Robnik-Brody (BRB), since it is based on two-component Berry- 
Robnik geometry but the irregular level sequence is modelled by a Brody distribution rather 
than GOE, thereby taking into account the localization phenomena on the classically chaotic 
regions. This rather phenomenological formula has been tested very carefully and it turns 
out that it is 100% statistically significant in almost all cases. 

In concluding we point out that the most important and outstanding open problem 
related to the research of the present paper is the precise and quantitative understanding and 
modelling of the localization phenomena on classically chaotic regions. The solution to this 
problem will lead us to the correct mathematical treatment of the Brody-like behaviour in 
classically diffusive ergodic regimes, as outlined in section 3. 

As for the KAM soft chaos scenario explained and understood in section 3 we should 
mention a cluster of related ideas and problems embodied in our sparsed banded random- 
matrix ensembles (SBRME) published in Prosen and Robnik (1993b), which are intended to 
model KAM perturbed Hamiltonians in the basis of its integrable part. Here we again face 
some interesting mathematical problems related to localization phenomena. In our numerical 
analysis of SBRME so far we have continned the existence of the fractional power-law level 
repulsion and the relevance of the Brody-like behaviour. 
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